Abstract—In this paper, we propose a two-dimensional (2-D) angles of arrival (AOAs) estimation method based on a joint diagonalization of two spatio-temporal (ST) correlation matrices. The mathematical manipulations proposed in this paper take the structure of the array that enable estimating 2-D AOAs simultaneously without 2-D searching or pairing. The performance comparison shows that the proposed method is better than ST-DOA matrix method.

Index Terms—2-D angles of arrival, joint diagonalization, pair matching, spatio-temporal.

1. Introduction

The problem of two dimensional (2-D) angles of arrival (AOAs) has attracted a lot of attentions, especially in fields such as radar, sonar, communications, and seismology. Many 2-D AOAs estimation methods have been proposed recently\cite{1}-\cite{10}. The popular high-resolution techniques used to distinguish multiple closely spaced sources are MUSIC-type and ML\cite{1}-\cite{4} methods. These methods, however, are based on computational demanding multidimensional searching for spectral peaks in a 2-D domain and are thus not amenable to real-time implementations. Though another class of 2-D AOAs estimation based on L-shape arrays\cite{3},\cite{5},\cite{6} can release the computation burden and obtain good AOAs estimates, either complex pair matching procedure is required or angles estimation of source signals with common one dimensional (1-D) angles may be failed.

In some applications, the sources are stationary with different spectral contents\cite{11},\cite{12}. L. Jin proposed a spatio-temporal DOA matrix (ST-DOA) algorithm which takes advantages of the a priori in time domain\cite{7},\cite{8}. It can estimate the DOA with common 1-D angles; however, the signals in some curved surface cannot be resolved.

In this paper, we propose a 2-D AOAs estimation method based on a joint diagonalization of two spatio-temporal covariance matrices (JD-ST-DOA matrix algorithm). It is shown that performing a joint diagonalization of a combined set of these matrices provides an improved estimation of the 2-D AOAs over the aforementioned techniques in two aspects. First, signals with common 1-D angles or in any curved surface can be resolved. Second, robustness is increased at low signal to noise ratios (SNRs). Comparison of the proposed technique with the ST-DOA matrix method\cite{7},\cite{8} is presented.

2. Assumptions and Data Model

Consider an arbitrary array consisting of M-element as shown in Fig. 1 and the first three sensors are chosen as guiding sensors. The displacement vectors joining the two guiding sensor pairs are along X and Y axes, respectively, and their corresponding magnitudes are d_x and d_y. (α_k, β_k) $(0 \leq \alpha_k, \beta_k < \pi, \quad k = 1,2,\cdots,D)$ denotes the AOAs of the kth signal $s_k(t)$. It is assumed that the source signal vector $s(t)$ is either H1, a deterministic ergodic sequence, or H2, a stationary multivariate process\cite{11},\cite{12}.

H1: $\lim_{K \to \infty} \frac{1}{K} \sum_{k=1}^{K} s(t+\tau)s^H(t) = \text{diag}[\rho_1(\tau), \rho_2(\tau), \cdots, \rho_D(\tau)]$ \hfill (1)

H2: $E[s(t+\tau)s^H(t)] = \text{diag}[\rho_1(\tau), \rho_2(\tau), \cdots, \rho_D(\tau)]$ \hfill (2)

where superscript H denotes the complex conjugate transpose.
of a vector, and $\text{diag}[\cdot]$ is the diagonal matrix formed with the elements of its vector valued argument. Assumptions H1 and H2 mean that the component processes $s_k(t)$ ($k=1,2,\cdots,D$) are mutually uncorrelated, and $\rho_k(\tau)$ denotes the autocovariance of $s_k(t)$, where superscript H denotes the Hermitian conjugate of a vector.

Suppose K snapshots are obtained, the baseband signals of the rth snapshot of the array output measured by the array can be expressed as

$$x_r(t) = \sum_{k=1}^{D} s_k(t) \exp\left[j \frac{2\pi}{\lambda} \left[d_{rk} \cos(\alpha_k) + d_{ik} \cos(\beta_k) \right] \right] + n_r(t)$$

where $t = T, 2T, \cdots, KT$, T is the sampling interval.

Equation (3) can be written in matrix form:

$$x(t) = As(t) + n(t)$$

where

$$x(t) = [x_1(t), x_2(t), \cdots, x_M(t)]^T$$

$$n(t) = [n_1(t), n_2(t), \cdots, n_M(t)]^T$$

$$s(t) = [s_1(t), s_2(t), \cdots, s_M(t)]^T$$

$$A = [a_1, a_2, \cdots, a_k, \cdots, a_M]^T$$

$$a_k = [a_{ik}, a_{ik}, a_{ik}, a_{ik}]^T$$

$$a_{ik} = \exp\left[j 2\pi d_j \frac{\sin(\beta_k)}{\lambda} \right], i = 2,3$$

where the matrix A is unknown and is not rank deficient by assumption. The additive noise $n(t)$ is modeled as a stationary, temporally white, zero mean complex random process with variance σ^2, independence of the source signals. For simplicity, we also require $n(t)$ to be spatially white:

$$E[n(t+\tau)n^H(\tau)] = \sigma^2\delta(\tau)I_M$$

where $\delta(\tau)$ is the Kronecker delta, and I_M denotes the $M \times M$ identity matrix.

3. JD-ST-DOA Matrix Algorithm

3.1 Forming Two ST-DOA Matrices

Under the above assumptions, we have the following cross-correlation of the array outputs:

$$R_{x,n}(\tau) = E[x(t+\tau)x^H(t)]$$

$$= \sum_{k=1}^{D} \left[R_{x,n}(\tau)a_k^H \right] a_k^T, \quad (l=1,2,3, \quad i=1,2,\cdots,M)$$

$$\tau \neq 0, \quad \tau = -NT, -2T, \cdots, -NT$$

(9)

Based on (8) and $\tau \neq 0$, the correlated noise can be removed. Let $y_i(\tau)$ $(l=1,2,3)$ and $b(\tau)$, respectively, be:

$$y_i(\tau) = [R_{x,n}(\tau), R_{x,n}(\tau), \cdots, R_{x,n}(\tau)]^T$$

(10)

$$b(\tau) = [R_{x,n}(\tau)a_1, \cdots, R_{x,n}(\tau)a_i, \cdots, R_{x,n}(\tau)a_M]^T$$

(11)

Rewrite $y_i(\tau)$ into matrix form:

$$y_i(\tau) = Ab(\tau) \quad (l = 3)$$

$$y_i(\tau) = A\Phi_1 b(\tau) \quad (l = 1)$$

$$y_i(\tau) = A\Phi_2 b(\tau) \quad (l = 2)$$

(12)-(14)

where Φ_1 and Φ_2 are $D \times D$ matrices,

$$\Phi_1 = \text{diag}\left[e^{\frac{j 2\pi d_j \cos(\alpha_1)}{\lambda}}, \cdots, e^{\frac{j 2\pi d_j \cos(\alpha_D)}{\lambda}} \right]$$

$$\Phi_2 = \text{diag}\left[e^{\frac{j 2\pi d_j \cos(\beta_1)}{\lambda}}, \cdots, e^{\frac{j 2\pi d_j \cos(\beta_D)}{\lambda}} \right]$$

(15)

(16)

By collecting the “pseudo snapshots” at $2N$ lags $\tau = -NT, -2T, \cdots, -NT$, the “pseudo snapshots” data matrices are formed as follows:

$$X_l = [y_1(-NT), \cdots, y_1(-T), y_1(T), \cdots, y_1(NT)]$$

(17)

equations (12)-(14) can be rewritten into

$$X_1 = AB$$

(18)

$$X_1 = A\Phi_1 B$$

(19)

$$X_2 = A\Phi_2 B$$

(20)

where

$$B = [b_1(-NT), \cdots, b_1(-T), b_1(T), \cdots, b_1(NT)]$$

Define ST-DOA matrix as

$$R_1 = X_l[X_l]^T$$

(21)

$$R_2 = X_l[X_l]^T$$

(22)

where $[X_l]^T$ denotes pseudoinverse, i.e.,

$$[X_l]^T = X_l[X_lX_l]^T$$

(23)

Based on the principle of DOA matrix algorithm[7]-[10], by eigendecomposition, we have

$$R_1 A_1 = A_1 \Phi_1$$

(24)

$$R_2 A_2 = A_2 \Phi_2$$

(25)

Then the (α_k, β_k) $(k=1,2,\cdots,D)$ can be obtained by using the first three elements of A_k according to (6) and (7) or using (15) and (16) after alignment of parameters $\phi_k(k=1,2,\cdots,D)$ and $\phi_h(h=1,2,\cdots,D)$ according to (26)

$$P = (A_2^H A_2)^{-1} A_2^H A_1$$

(26)

wherever there is a unity at entry of $P (k,h)$.

The above procedure means that an estimate can be obtained if and only if Φ_1 or Φ_2 have unequal entries. However, there is a degeneracy in the eigenvectors A_k when two sources have the same α and a degeneracy in the
eigenvectors A_2 when two sources have the same β, thereby precluding the ability to determine A_1 or A_2 or both if only R_1 or R_2 is used. Of course, as R_1 and R_2 share the same set of eigenvectors A originally, we will devise, in the next section, a JD based procedure to determine a common A.

3.2 JD Procedure

The first step of our JD procedure consisting of obtaining a whitening matrix W, i.e., a $M \times D$ matrix verifying:

$$WQW^H = WAA^HW^H = I$$ \hspace{1cm} (27)

where

$$Q_x = \frac{1}{2N}Xx^H = \frac{1}{2N} \sum_{n=1}^{N} y(nT_y)y(nT_y)^H$$ \hspace{1cm} (28)

and we assume that

$$\frac{1}{2N} \sum_{n=1}^{N} b(nT_y)b(nT_y)^H = \frac{1}{2N} \mathbf{BB}^H = I$$

and $b(\tau)$ has unit variance so that the dynamic range of $b(\tau)$ is accounted for by the magnitude of the corresponding column of A, which does not affect the estimation of the 2-D AOAs.

Equation (27) shows that if W is a whitening matrix, then WA is a $D \times D$ unitary matrix. It follows that for any whitening matrix $M \times D$, there exists a unitary matrix U such that $WA = U$. As a consequence, matrix A can be factored as

$$A = W^HU$$ \hspace{1cm} (29)

This whitening procedure reduces the determination of the $M \times D$ mixture matrix A to that of a unitary $D \times D$ matrix U. The whitened process still obeys a linear model

$$Z_i = WX_i, \quad i = 1, 2, 3$$ \hspace{1cm} (30)

Define the following cross-correlation matrix between Z_3 and Z_i ($i = 1, 2$):

$$G_i = \frac{1}{N}Z_iZ_i^H = \frac{1}{N}[WX_iX_i^HW^H]$$

$$= \frac{1}{N}[W(\Phi_1)BB^H(\Phi_2)^HW^H] = U\Phi_iU^H$$ \hspace{1cm} (31)

The second step of our JD procedure is to determine unitary factor U, which is obtained by performing a joint diagonalization\(^{[11]}\) of the combined set of $\tilde{G} = \{G_1, G_2\}$. The essential uniqueness of joint diagonalization is guaranteed by the \textit{Theorem} given in [11].

Theorem 1. Sufficiency condition: For Φ_1 and Φ_2, if $(\alpha, \beta) \in [0, \pi) \times [0, \pi)$, then

$$\exists g, g = 1, 2, \quad \forall 1 \leq p \neq q \leq D \quad \phi_{pq} \neq \phi_{gg}

Proof. If $(\alpha, \beta) \in [0, \pi) \times [0, \pi)$, for the AOAs of the pth source (α_p, β_p) and qth source (α_q, β_q), $p \neq q$, there exists three cases:

1. If $\beta_p \neq \beta_q$, $\alpha_p = \alpha_q$, then $\phi_{pq} \neq \phi_{qq}$;
2. If $\beta_p = \beta_q$, $\alpha_p \neq \alpha_q$, then $\phi_{pq} \neq \phi_{qq}$;
3. If $\beta_p \neq \beta_q$, $\alpha_p \neq \alpha_q$, then $\phi_{pq} \neq \phi_{qq}$.

Theorem 1 means that there exists at least one matrix Φ_g ($g = 1, 2$) satisfies $\phi_{pq} \neq \phi_{qq}$. Then matrix A can be obtained by (29).

The third step of our JD procedure is to determine (α, β) of the ith source. Based on (24) and (25), as a_k ($k = 1, 2, \cdots, D$) is the eigenvector of both R_1 and R_2, we can get

$$\phi_{k} = \cos^{-1}[\text{arg}(a_k^H R_i a_k)] / 2 \pi d_i$$ \hspace{1cm} (34)

$$\beta = \cos^{-1}[\text{arg}(a_k^H R_i a_k)] / 2 \pi d_i$$ \hspace{1cm} (35)

no pair matching operation needs to be done.

3.3 Implementation of the JD-ST-DOA Matrix Algorithm

Based on the previous sections, the JD-ST-DOA matrix algorithm is defined by the following implementation:

1. Estimate the sample cross-correlation of the array outputs according to (9).
2. Form the new pseudo-observation vectors X_i ($i = 1, 2, 3$).
3. Estimate the sample covariance Q_L from the $M \times T$ pseudo-snapshots X_i. Let $\lambda_1, \lambda_2, \cdots, \lambda_D$ denote the D large eigenvalues of Q_L, and h_1, h_2, \cdots, h_p be the corresponding eigenvectors. The whitening matrix W is formed by

$$W = \{\lambda_1^{1/2}h_1, \lambda_2^{1/2}h_2, \cdots, \lambda_p^{1/2}h_p\}$$

4. Form the cross-correlation matrix G_i ($i = 1, 2$) according to (31).
5. A unitary matrix U is then obtained as joint diagonalizer of the set G.
6. The matrix A is estimated as $A = W^U$, then the 2-D AOAs can be estimated according to (34) and (35).

3.4 Computation Complexity

In general, the total snapshots K and pseudo snapshots $2N$ are much greater than the number of sensors, i.e., $K \gg M$, $2N \gg M$. Forming the $2N$ lags cross-correlation of the array
outputs requires on the order of \((2KNM-N^3M-NM)\). Forming the sample covariance matrix requires on the order of \(2M^2N\), eigendecomposition of a \(M \times M\) dimensional matrix requires on the order of \(O(M^3)\) \([13]\). Joint diagonalizer of the set \(\hat{G}\) (two \(D \times D\) matrices) requires on the order of \(2O(D^3)\) \([14]\). The main computation flops of JD-ST-DOA matrix algorithm lies in forming the \(2N\) lags cross-correlation of the array outputs.

4. Simulation Results

In our simulations, assume \(d_1 = d_2 = \lambda / 2\), \(M=4\). Simulation results are also compared with those of the ST-DOA matrix method \([7],[8]\).

Example 1: Assume three narrowband signals impinging on the array from directions \((50^\circ,50^\circ)\), \((50^\circ,70^\circ)\) and \((70^\circ,70^\circ)\). Note that in this case \(s_1\) and \(s_2\) have common \(\alpha\), \(s_2\) and \(s_3\) have common \(\beta\). The frequencies of these baseband signals, which are normalised by sample frequency, are 0.12, 0.14, 0.16, respectively. The snapshots \(K=150\) and the pseudo snapshots \(2N=100\) \((n \in [-50,-1] \cup [1,50])\). In the ST-DOA matrix algorithm, we use the third ST-DOA matrix since the first two ST-DOA matrices have degenerate eigenvalue spectra. The root mean square error (RMSE) of the \(k\)th source is defined as

\[
RMSE_k = \sqrt{E[(\hat{\alpha}_k - \alpha_k)^2 + (\hat{\beta}_k - \beta_k)^2]}.
\]

The performance of the estimators is obtained from 300 Monte-Carlo simulations, by calculating the RMSEs of the AOA estimates. Fig. 2 shows the RMSEs in degrees of the estimates of the three signals when SNR is varied from \(-10\) dB to \(10\) dB. We can see that the robustness is increased with our JD-ST-DOA method at low SNRs.

Example 2: In this example, we use three benchmark signals \(s_1, s_2, s_3\). They can be found in the file nband5.mat (the first three signals) provided by the ICALAB toolbox with \([15]\). Assume three signals impinging on the array from the directions \((50^\circ,50^\circ), (60^\circ,50^\circ), (69^\circ,69^\circ)\). In this case for ST-DOA matrix algorithm each ST-DOA matrix has a degenerate eigenvalue spectrum. \(K=300, 2N=200\) \((n \in [-100,-1] \cup [1,100])\), SNR=15 dB. To obtain a measure of statistical repeatability, we make 100 Monte-Carlo simulations. Fig. 3 shows that the ST-DOA matrix algorithm can only estimate one of the three signals because the other two signals have a degenerate eigenvalue spectrum, but the proposed method can estimate three signals successfully.

From above examples, it is clear that the proposed JD-ST-DOA matrix algorithm outperforms the ST-DOA matrix algorithm because the joint diagonalization criterion allows the structure information contained in each spatio-temporal correlation matrix to be jointly integrated in a single unitary matrix.

Fig. 3. Comparison of JD-ST-DOA with ST-DOA.

5. Conclusions

In this paper, we proposed a JD-ST-DOA matrix algorithm to handle the problem of 2-D AOA estimation. It is a direct approach with high resolution by using joint diagonalization technique without a search procedure. Moreover, the proposed algorithm can handle sources with common 1-D angles. Numerical examples illustrate that the proposed method is better than ST-DOA matrix method.

References

Tie-Qi Xia was born in Tianjin, China, in 1978. He received the M.S. degree from the School of Electronic Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China, in 2002. He is currently pursuing the Ph.D. degree with UESTC. His research interests include array signal processing, time delay estimation, ICA and SCA.

Xue-Gang Wang was born in Hunan, China, in 1962. He now is a professor and doctoral supervisor with UESTC. His current research interests include radar signal processing and high speed signal processing.

Qun Wan was born in Jiangxi, China, in 1971. He now works with No. 10th Inst., China Electron. Tech. Group Corporation, Chengdu. His current research interests include signal processing and electronic devices making.

Ling Wang was born in Mianyang, China, in 1978. He now works with No. 10th Inst., China Electron. Tech. Group Corporation, Chengdu. His current research interests include signal processing and mobile location.