The terminology and notion in this paper are similar to Ref. [1]. All graphs discussed here are finite and simple.

The diameter \(d(G) \) of a graph \(G \) is the maximal distance between pairs of vertices of \(G \). The connectivity of \(G \) is the minimum number of vertices to be removed in order to disconnect the graph. When a network is modeled as a graph, a vertex represents a node of processor (or a station) and an edge between two vertices is the link (or connection) between those two processors. In this context, diameter is a measurement for maximum transmission delay, and connectivity is a good parameter to study how much tolerant the network can be in the occasion of node failures. Sometimes, we are interested in looking at a collection of multipaths between a pair of two vertices rather than at a single shortest path between them. So the \(k \) collection of multipaths between a pair of two vertices is the link (or connection) between those two processors. In this context, diameter is a measurement for maximum transmission delay, and connectivity is a good parameter to study how much tolerant the network can be in the occasion of node failures. Sometimes, we are interested in looking at a collection of multipaths between a pair of two vertices rather than at a single shortest path between them. So parameters of the \(k \)-wide distance (or \(k \)-distance) and \(k \)-diameter are introduced. They are extension of the distance and the diameter. The \(k \)-diameters of some kinds of graphs (or networks) have been studied in Ref. [2]. In this paper we discuss the \(k \)-distance and \(k \)-diameter of circular graph. And the \(k \)-diameters of the connected circulant graphs with degree 3 are obtained.

Lemma 1 If \(G \) is a 3-regular 3-connected graph with \(2n \) vertices, then \(d_3(G) \leq n \).

Let

\[
\begin{align*}
Z_n &= \{0, 1, \ldots, n-1\} \\
S &\subseteq Z_n - \{0\} \\
- S &= S \mod n
\end{align*}
\]

namely, there exist \(j_1, j_2, \ldots, j_r \) such that

\[
S = \{j_1, j_2, \ldots, j_r, n - j_1, n - j_2, \ldots, n - j_r\}
\]

where \(j_1, j_2, \ldots, j_r \) are called spanning elements.

Definition 1 The graph \(G \) with order \(n \) is called circulant graph if it satisfies:

1. \(V(G) = Z_n \);
2. \(E(G) = \{(j) | j - i \in S\} \), where the operation takes module \(n \).

The graph \(G \) in definition 1 is denoted by \(C_n(j_1, j_2, \ldots, j_r) \), where \(j_1 < j_2 < \cdots < j_r \). Clearly, according to definition 1, the circulant graphs are all regular graphs. So we also call a circulant graph as the circulant graph with degree \(k \) if it is a \(k \)-regular graph. Thus \(C_n(i, n/2) \), \(n \) is even, is a circulant graph with order \(n \) and degree 3 whose spanning elements are \(i \) and \(n/2 \).

Let \(\gcd(x, y) \) be the maximum common divisor of \(x \) and \(y \). It has been proved that a circulant graph \(C_n(j_1, j_2, \ldots, j_r) \) is a connected graph iff
Lemma 2 Let G be a circulant graph of order n, and k be a positive integer. If $d_k(G)$ is existent, then $\exists u \in \{1, 2, \cdots, \lfloor n/2 \rfloor \}$ satisfies

$$d_k(G) = d_k(0, u)$$

where

$$\lfloor n/2 \rfloor = \begin{cases} n/2 & n \text{ is even} \\ n-1/2 & n \text{ is odd} \end{cases}$$

or

$$d_k(G) = \max_{x \in A} \{d_k(0, x)\}$$

where $A = \{1, 2, \cdots, \lfloor n/2 \rfloor \}$

Theorem 1 Let circulant graph $G = C_n(i, n/2)$, where $n \geq 4$ and n is even. If $\gcd(n, i) = 1$, then

1) $d_i(G) = \lfloor n/2 \rfloor \quad \text{if } n \equiv 2 \pmod{4}$

2) $d_i(G) = \lfloor n/2 \rfloor + 1 \quad \text{if } n \not\equiv 2 \pmod{4}$

3) $d_i(G) = \frac{n}{2}$

Proof G is a connected circulant graph means $\gcd(n, 2, n/2) = 1$. It follows that $n/2$ is odd.

1) According to the structure of G as shown in Fig.1, for $\forall x \in \{0, 2, \cdots, n/2 - 2\}$, we have

$$d(0, \frac{n}{2} + x) = d(0, x) + 1$$

Since $x \in V(C_{n/2})$, we have

$$d_i(G) = \max_{x \in V(C_{n/2})} d(0, \frac{n}{2} + x) = \lfloor n/4 \rfloor + 1 = \frac{n + 2}{4}$$

where $C_{n/2} = 2 \cdots (n - 2) \cdot 0$ is a $n/2$-cycle. $N/2$ is odd means $\lfloor n/4 \rfloor = (n - 2)/4$.

2) It is easily seen that $d_i(C_n(2, 3)) = 3$. Now we suppose that $n > 6$ and $G' = G - 0$. According to the structure of G' as shown in Fig.2, we know $y = 2(n - 2)/4 = (n - 2)/2$ and $y' = n/2 + y$. $N/2$ is odd means $\lfloor (n - 2)/4 \rfloor = (n - 2)/4$.

Let

$$p_0 = 2 \cdots y$$

$$q_0 = (n - 2)(n - 4) \cdots (y + 2)$$

Since $n/2$ is odd, we have

$$|p_0| = |q_0| = \frac{n - 2}{4} - 1$$

Let

$$p^* = p_0 y^*$$

$$q^* = q_0 (y^* + 2) y^*$$

$$r^* = \frac{n}{2} + 2(\frac{n}{2} + 4) \cdots y^*$$

Clearly,

$$|p^*| = |r^*| = \frac{n - 2}{4}$$

$$|q^*| = |p^*| + 1$$

According to Fig.2, the paths p^*, q^* and r^* are the shortest $2\cdot y^*$ path (that is the path from 2 to y^*), $(n - 2)\cdot y^*$ path and $(n/2)\cdot y^*$ path, respectively in G'. So, in G, the path $0p^*$ is the shortest 0-y^* path which contains the vertex 2, $0q^*$ is the shortest 0-y^* path which contains $n - 2$ and $0r^*$ is the shortest 0-y^* path which contains $n/2$.

Let $N(0)$ be the neighbour set of the vertex 0 in G,
are also two internally disjoint 0-y' paths which both contain the vertices of N(0), we have

$$\max \{|0p'|, |0r'|\} \leq \max \{|p|, |q|\}$$

Therefore,

$$d_s(0, y') = \max \{|0p'|, |0r'|\} = \frac{n-2}{4} + 1 = \frac{n+2}{4}$$

We choose $x \in \{1, 2, \cdots, n/2\}$.

Case 1 $x = n/2$. Let p and q are two internally disjoint 0-(n/2) paths, where p is the path 0(n/2) and q is the path 02(n/2+2)/2. Therefore,

$$d_s(0, \frac{n}{2}) \leq \max \{|p|, |q|\} = 3 = d_s(0, y') \quad (1)$$

Case 2 $x \in \{2, 4, \cdots, y\}$, where $y = (n/2)/2$.

Case 2.1 $x = y$. Let p and q are two internally disjoint 0-x paths, where p is the path 02(4-2)/2 and q is the path 0(n/2)(x-4)-x. Therefore,

$$d_s(0, x) \leq \max \{|p|, |q|\} = |q| = |p| + 1$$

$$\frac{n+2}{4} = d_s(0, y') \quad (2)$$

Case 2.2 $x < y$. Let p and q are two internally disjoint 0-x paths, where p is the path 02-4 and q is the path 0(n/2)(n/2+2)-4-x. Therefore,

$$d_s(0, x) \leq \max \{|p|, |q|\} = |q| = |p| + 2$$

$$\frac{x}{2} + 2 < \frac{y}{2} + 2 = \frac{n+2}{4} = d_s(0, y') \quad (3)$$

Case 3 $x \in \{1, 3, \cdots, (n/2)-2\}$. Let p and q are two internally disjoint 0-x paths, where p is the path 0(n/2)(n/2-4)-4-x and q is the path 0(n/2)(n/2-4)-x. Therefore

$$d_s(0, x) \leq \max \{|p|, |q|\} = |q| = |p| + 1$$

$$\frac{n+2}{4} = d_s(0, y') \quad (4)$$

By Eqs.(1), (2), (3) and (4), we have $d_s(0, x) \leq d_s(0, y')$, for $x \in \{1, 2, \cdots, n/2\}$. So, by Lemma 2 we have

$$d_s(G) = d_s(0, y') = \frac{n+2}{4}$$

3) $p' = (n/2+2)(n/2+4)\cdots(n/2-4)(n/2-2)$ as shown in Fig.3 is the shortest 0-(n/2-2) path in $G' = G-{n-2,n/2}$. On the other hand p' is the shortest 0-(n/2-2) path in G that contains neither the vertex $n-2$ nor the vertex $n/2$.

q' and r' are also two internally disjoint 0-(n/2-2) paths, where $q' = (n-2)(n/2-2)$ and $r' = (n/2)(n/2-2)$. Furthermore, p', q' and r' are internally disjoint. Cleanly,

$$|q'| = |r'| \leq |p'|$$

It follows that for arbitrary three internally disjoint 0-(n/2-2) paths of G, p, q, and r, we have

$$\max \{|p'|, |q'|, |r'|\} = |p'| = \max \{|p|, |q|, |r|\}$$

Thus

$$d_s(0, \frac{n}{2} - 2) = |p'| = \frac{n}{2}$$

that is

$$d_s(G) \geq \frac{n}{2}$$

According to Fig.1 it is easily seen that there exist three internally disjoint x-y paths in G, where x, y, $x \neq y$, are any pair vertices of G. Thus, by Menger’s Theorem, G is a 3-connected graph. From Lemma 1, $d_s(G) \leq n/2$. So $d_s(G) = n/2$.

![Graph G'](image)

Theorem 2 Let $G = C_n(i, n/2)$ be a connected circulant graph, where $n \geq 6$ and n is even. If $\gcd(n, i) \neq 1$, then

1) $d_s(G) = \frac{n+2}{2}$

2) $d_s(G) = \begin{cases} 3 & n = 6 \\ \frac{n+2}{4} & n > 6 \end{cases}$

3) $d_s(G) = \frac{n}{2}$

Proof For a connected circulant graph $C_n(i, n/2)$, Ref.[5] shows that if $\gcd(n, i) \neq 1$ then $C_n(i, n/2) \cong C_n(2, n/2)$. Thus, by Lemma 3, 1), 2) and 3) all are true.

From Theorem 1 and Theorem 2, we have following Theorem 3 which deals with the k-diameters.
of the connected circulant graphs of degree 3.

Theorem 3 Let circulant graph \(G = C_n(i, n/2) \), \(n \geq 4 \) and \(n \) is even. If \(G \) is a connected graph, then

1) \(d_1(G) = \left\lfloor \frac{n + 2}{4} \right\rfloor \)

\[\begin{cases}
\left\lfloor \frac{n + 2}{4} \right\rfloor + 1 & \text{gcd}(n,i) = 1 \\
\left\lfloor \frac{n + 2}{4} \right\rfloor & \text{gcd}(n,i) \neq 1 \quad n > 6
\end{cases} \]

2) \(d_2(G) = \left\lfloor \frac{n + 2}{4} \right\rfloor \text{gcd}(n,i) \neq 1 \quad n > 6 \)

3) \(d_3(G) = \frac{n}{2} \quad n = 6 \)

3 Conclusions

When \(\text{gcd}(n, i) = 1 \), the \(k \)-diameter of \(C_n(i, n/2) \) has been studied in Ref.[4]. In this paper, for \(\text{gcd}(n, i) \neq 1 \) the \(k \)-diameters of \(C_n(i, n/2) \) is discussed. However, it is a difficult to obtain a \(k \)-diameter of arbitrary a circulant graph. On the other hand, the Cayley graph is a graph that has been widely used as a group-theoretic model for symmetric interconnection. The circulant graph is a kind of Cayley graph. therefore, it is necessary to further research the diameter of circulant graph.

References

Brief Introduction to Author(s)

ZHANG Xian-di (张先迪) was born in Sichuan Province, China, in 1947. He is now a professor with University of Electronic Science and Technology of China. His research interests include graph theory and its applications.

LI Man-li (李曼荔) was born in Sichuan Province, China, in 1982. He is now a postgraduate with School of Applied Mathematics, University of Electronic Science and Technology of China. His research interests include graph theory and its applications.

References

Brief Introduction to Author(s)

ZHANG Xian-yong (张贤勇) was born in Sichuan province, China, 1978. He graduated from College of Mathematics and Software Science of Sichuan Normal University in 2004. Now he is a teacher of Section of Fundamental Studies, Sichuan Normal University. His research includes mathematical logic and artificial intelligence. He has published more than 10 papers.

MO Zhi-wen (莫智文) is a Professor with College of Mathematics and Software Science, Sichuan Normal University. His research interests include theory and applications of fuzzy automaton.