Theoretical Proof of Unconditional Stability of the 3-D ADI-FDTD Method*

WANG Yingjun WANG Bingzhong SHAO Wei
(School of Physical Electronics, UESTC Chengdu 610054 China)

Abstract In order to eliminate Courant-Friedrich-Levy (CFL) condition restraint and improve computational efficiency, a new finite-difference time-domain (FDTD) method based on the alternating-direction implicit (ADI) technique is introduced recently. In this paper, a theoretical proof of the stability of the three-dimensional (3-D) ADI-FDTD method is presented. It is shown that the 3-D ADI-FDTD method is unconditionally stable and free from the CFL condition restraint.

Key words alternating-direction implicit (ADI) technique; Courant-Friedrich-Levy (CFL) condition restraint; finite-difference time-domain (FDTD) method; stability

The finite-difference time-domain (FDTD) method is a very useful numerical simulation technique for solving electromagnetic problem[1]. Because the traditional FDTD method is based on an explicit finite-difference algorithm, the maximum time step must be small enough so as to satisfy the Courant-Friedrich-Levy (CFL) stability condition[2]. Therefore, it will cause excessive computation memory and time for problems with electrically small local structures, and largely limit FDTD applications for electromagnetic simulation.

Recently, a new FDTD algorithm free from the CFL stability condition has been proposed[3~5]. This new algorithm is based on the alternating direction implicit (ADI) technique and is applied to Yee’s staggered cell to solve Maxwell’s equations. In Ref. [3], the ADI-FDTD formulation for the two-dimensional TE wave case has been given and shown to be unconditionally stable. Consequently, when the ADI-FDTD method is used, the limitation of the maximum time-step size of the method does not depend on the CFL stability condition, but rather on the numerical dispersion.

Applications of the ADI-FDTD method to 3-D problems have been given in Refs.[4,5] without theoretical proof of the unconditional stability. A theoretical proof of unconditional stability is introduced from the view of the growth matrix in spatial spectral domain[6]. In this paper, details of another simpler theoretical proof of the unconditional stability for the 3-D ADI-FDTD method are presented.

1 Difference Scheme of the 3-D ADI-FDTD Method

In an isotropic, time-invariant, lossless and source-free medium, Maxwell’s curl equations can be represented by the following six coupled scalar equations in Cartesian coordinates:

\[
\frac{\partial E_x}{\partial t} = \frac{1}{\varepsilon} \left(\frac{\partial H_y}{\partial z} - \frac{\partial H_z}{\partial y} \right) \quad (1)
\]
\[
\frac{\partial E_y}{\partial t} = \frac{1}{\varepsilon} \left(\frac{\partial H_z}{\partial x} - \frac{\partial H_x}{\partial z} \right) \quad (2)
\]
\[
\frac{\partial E_z}{\partial t} = \frac{1}{\varepsilon} \left(\frac{\partial H_x}{\partial y} - \frac{\partial H_y}{\partial x} \right) \quad (3)
\]
\[
\frac{\partial H_x}{\partial t} = \frac{1}{\mu} \left(\frac{\partial E_y}{\partial z} - \frac{\partial E_z}{\partial y} \right) \quad (4)
\]
\[
\frac{\partial H_y}{\partial t} = \frac{1}{\mu} \left(\frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x} \right) \quad (5)
\]
\[
\frac{\partial H_z}{\partial t} = \frac{1}{\mu} \left(\frac{\partial E_x}{\partial y} - \frac{\partial E_y}{\partial x} \right) \quad (6)
\]

The numerical formulation of the 3-D ADI-FDTD
method is presented in Eq. (7)~(18). It consists of two procedures. In the 3-D ADI-FDTD algorithm, we still adopt the Yee's staggered cell to solve Maxwell's equations. In procedure one, the first term of the right-hand side is replaced by an implicit difference approximation, while the second term by an explicit difference approximation. In procedure two, the second term of the right-hand side is replaced by an implicit difference approximation, while the first term by an explicit difference approximation.

Procedure one

\[
E_{x}^{n+1}(i+\frac{1}{2}, j, k) - E_{x}^{n}(i+\frac{1}{2}, j, k) = \frac{H_{y}^{n+1}(i+\frac{1}{2}, j+\frac{1}{2}, k) - H_{y}^{n+1}(i+\frac{1}{2}, j-\frac{1}{2}, k)}{\Delta t} + \frac{E_{x}^{n}(i+\frac{1}{2}, j, k) - E_{x}^{n}(i+\frac{1}{2}, j+1, k)}{\Delta z} \tag{7}
\]

\[
H_{y}^{n+1}(i+\frac{1}{2}, j, k+\frac{1}{2}) - H_{y}^{n}(i+\frac{1}{2}, j, k+\frac{1}{2}) = \frac{E_{y}^{n+1}(i+\frac{1}{2}, j, k+\frac{1}{2}) - E_{y}^{n+1}(i+\frac{1}{2}, j, k+\frac{1}{2})}{\Delta t} \tag{10}
\]

\[
E_{y}^{n+1}(i+1, j, k+\frac{1}{2}) - E_{y}^{n}(i+1, j, k+\frac{1}{2}) = \frac{E_{y}^{n}(i+1, j, k) - E_{y}^{n}(i+1, j, k+1)}{\Delta y} \tag{11}
\]

Procedure two

\[
E_{y}^{n+1}(i+1, j+\frac{1}{2}, k) - E_{y}^{n}(i+1, j+\frac{1}{2}, k) = \frac{H_{x}^{n+1}(i+\frac{1}{2}, j+\frac{1}{2}, k) - H_{x}^{n+1}(i+\frac{1}{2}, j, k-\frac{1}{2})}{\Delta t} \tag{12}
\]

\[
H_{x}^{n+1}(i+\frac{1}{2}, j, k-\frac{1}{2}) - H_{x}^{n+1}(i+\frac{1}{2}, j, k+\frac{1}{2}) = \frac{E_{y}^{n+1}(i+\frac{1}{2}, j, k-\frac{1}{2}) - E_{y}^{n+1}(i+\frac{1}{2}, j, k+\frac{1}{2})}{\Delta z} \tag{13}
\]

\[
E_{y}^{n+1}(i+1, j+1, k) - E_{y}^{n}(i+1, j+\frac{1}{2}, k) = \frac{H_{x}^{n+1}(i+\frac{1}{2}, j, k+\frac{1}{2}) - H_{x}^{n+1}(i+\frac{1}{2}, j-\frac{1}{2}, k)}{\Delta t} \tag{14}
\]

\[
H_{x}^{n+1}(i+\frac{1}{2}, j-\frac{1}{2}, k) - H_{x}^{n+1}(i+\frac{1}{2}, j+\frac{1}{2}, k) = \frac{E_{y}^{n+1}(i+\frac{1}{2}, j-\frac{1}{2}, k) - E_{y}^{n+1}(i+\frac{1}{2}, j+\frac{1}{2}, k)}{\Delta z} \tag{15}
\]
\[
H_{x}^{n+1}\left(i+\frac{1}{2},j,k+\frac{1}{2}\right) - H_{x}^{n}\left(i+\frac{1}{2},j,k+\frac{1}{2}\right) = \Delta t \frac{\Delta x}{\mu} \left[E_{x}^{n+1}\left(i,j,k+1\right) - E_{x}^{n+1}\left(i,j,k\right) \right] + \Delta t \frac{\Delta y}{\varepsilon} \left[E_{y}^{n+1}\left(i,j+1,k\right) - E_{y}^{n+1}\left(i,j,k\right) \right] + \Delta t \frac{\Delta z}{\mu} \left[E_{z}^{n+1}\left(i,j,k+1\right) - E_{z}^{n+1}\left(i,j,k\right) \right]
\]

\[
H_{y}^{n+1}\left(i+\frac{1}{2},j,k+\frac{1}{2}\right) - H_{y}^{n}\left(i+\frac{1}{2},j,k+\frac{1}{2}\right) = \Delta t \frac{\Delta x}{\mu} \left[E_{x}^{n+1}\left(i+1,j,k+\frac{1}{2}\right) - E_{x}^{n+1}\left(i,j,k+\frac{1}{2}\right) \right] + \Delta t \frac{\Delta y}{\varepsilon} \left[E_{y}^{n+1}\left(i,j+1,k\right) - E_{y}^{n+1}\left(i,j,k\right) \right] + \Delta t \frac{\Delta z}{\mu} \left[E_{z}^{n+1}\left(i,j,k+1\right) - E_{z}^{n+1}\left(i,j,k\right) \right]
\]

\[
H_{z}^{n+1}\left(i+\frac{1}{2},j,k+\frac{1}{2}\right) - H_{z}^{n}\left(i+\frac{1}{2},j,k+\frac{1}{2}\right) = \Delta t \frac{\Delta x}{\mu} \left[E_{x}^{n+1}\left(i+1,j,k+\frac{1}{2}\right) - E_{x}^{n+1}\left(i,j,k+\frac{1}{2}\right) \right] + \Delta t \frac{\Delta y}{\varepsilon} \left[E_{y}^{n+1}\left(i,j+1,k\right) - E_{y}^{n+1}\left(i,j,k\right) \right] + \Delta t \frac{\Delta z}{\mu} \left[E_{z}^{n+1}\left(i,j,k+1\right) - E_{z}^{n+1}\left(i,j,k\right) \right]
\]

2 Numerical Stability

The numerical stability of the combination of procedure one and procedure two can be analytically derived by using the Von Neumann method. The plane wave eigenmodes of a 3-D electromagnetic wave are defined as follows:

\[
E_{x}^{n}(i,j,k) = E_{0x} e^{\xi_{x} n} \exp\left[i(k_{x} \Delta x + jk_{y} \Delta y + kk_{z} \Delta z)\right]
\]

\[
E_{y}^{n}(i,j,k) = E_{0y} e^{\xi_{y} n} \exp\left[i(k_{x} \Delta x + jk_{y} \Delta y + kk_{z} \Delta z)\right]
\]

\[
E_{z}^{n}(i,j,k) = E_{0z} e^{\xi_{z} n} \exp\left[i(k_{x} \Delta x + jk_{y} \Delta y + kk_{z} \Delta z)\right]
\]

where \(\xi_{x} = \sqrt{-1}, k_{x}, k_{y}, \) and \(k_{z} \) are the x-, y- and z-components of numerical wavevector \(k \), respectively. \(\xi \) indicates the growth factor of each component at each time step. Substituting the eigenmode expressions of Eq.(19) into Eqs.(7)~(12) in procedure one, we obtain

\[
\begin{bmatrix}
\bar{\xi}_{1} - 1 & 0 & 0 & 0 & \bar{\xi}_{1} q_{x} & -\bar{\xi}_{1} q_{y} & 0 \\
0 & \bar{\xi}_{1} - 1 & 0 & -\bar{\xi}_{1} q_{y} & 0 & \bar{\xi}_{1} q_{x} & 0 \\
0 & 0 & \bar{\xi}_{1} - 1 & \bar{\xi}_{1} q_{x} & -\bar{\xi}_{1} q_{y} & 0 & 0 \\
0 & -\bar{\xi}_{1} q_{x} & 0 & \bar{\xi}_{1} - 1 & 0 & \bar{\xi}_{1} q_{y} & 0 \\
0 & \bar{\xi}_{1} q_{y} & 0 & 0 & \bar{\xi}_{1} - 1 & 0 & \bar{\xi}_{1} q_{x} \\
0 & -\bar{\xi}_{1} q_{y} & 0 & 0 & 0 & \bar{\xi}_{1} - 1 & 0 \\
\end{bmatrix}
\times
\begin{bmatrix}
E_{0x} \\
E_{0y} \\
E_{0z} \\
H_{0x} \\
H_{0y} \\
H_{0z}
\end{bmatrix}
= 0
\]

To guarantee the existence of solutions to the linear homogeneous system, the determinant to the

\[
q_{x} = \frac{2 \Delta t}{\varepsilon \Delta x} \sin\left(\frac{k_{x} \Delta x}{2}\right) \\
q_{y} = \frac{2 \Delta t}{\varepsilon \Delta y} \sin\left(\frac{k_{y} \Delta y}{2}\right) \\
q_{z} = \frac{2 \Delta t}{\mu \Delta z} \sin\left(\frac{k_{z} \Delta z}{2}\right)
\]
coefficient matrix must be zero. This result is
\[
\begin{bmatrix}
\xi_i^2 P_{x}\xi_i^2 P_{y} - M_i(\xi_i) L_i(\xi_i) \\
\xi_i^2 P_{x}\xi_i^2 P_{y} + M_i(\xi_i) N_i(\xi_i)
\end{bmatrix}
\begin{bmatrix}
\xi_i^2 P_{x}\xi_i^2 P_{y} - M_i(\xi_i) L_i(\xi_i) \\
\xi_i^2 P_{x}\xi_i^2 P_{y} + M_i(\xi_i) N_i(\xi_i)
\end{bmatrix}
\begin{bmatrix}
P_{x}\xi_i^2 P_{y} + M_i(\xi_i) P_{x}\xi_2 \\
P_{x}\xi_i^2 P_{y} + M_i(\xi_i) P_{x}\xi_2
\end{bmatrix}
\]
(21)

where
\[
P_i = q_i r_i, \quad P_y = q_i r_i, \quad P_z = q_i r_i,
\]
\[
M_i(\xi_i) = (\xi_i - 1)^2 + \xi_i^2 P_x + P_z,
\]
\[
N_i(\xi_i) = (\xi_i - 1)^2 + \xi_i^2 P_x + P_z,
\]
\[
L_i(\xi_i) = (\xi_i - 1)^2 + \xi_i^2 P_x + P_z.
\]

Similarly, we can derive the equation satisfied by

\[
\begin{bmatrix}
\xi_i^2 P_{x}\xi_i^2 P_{y} - M_i(\xi_i) L_i(\xi_i) \\
\xi_i^2 P_{x}\xi_i^2 P_{y} + M_i(\xi_i) N_i(\xi_i)
\end{bmatrix}
\begin{bmatrix}
\xi_i^2 P_{x}\xi_i^2 P_{y} - M_i(\xi_i) L_i(\xi_i) \\
\xi_i^2 P_{x}\xi_i^2 P_{y} + M_i(\xi_i) N_i(\xi_i)
\end{bmatrix}
\begin{bmatrix}
P_{x}\xi_i^2 P_{y} + M_i(\xi_i) P_{x}\xi_2 \\
P_{x}\xi_i^2 P_{y} + M_i(\xi_i) P_{x}\xi_2
\end{bmatrix}
\]
(22)

where
\[
M_i(\xi_i) = (\xi_i - 1)^2 + \xi_i^2 P_x + P_z,
\]
\[
N_i(\xi_i) = (\xi_i - 1)^2 + \xi_i^2 P_x + P_z,
\]
\[
L_i(\xi_i) = (\xi_i - 1)^2 + \xi_i^2 P_x + P_z.
\]

Let \(\xi_i = \frac{1}{\beta} \) and substitute it for Eq.(21), we obtain
\[
\begin{bmatrix}
P_{x}\xi_i^2 P_{y} - \beta^2 M_i(\frac{1}{\beta}) L_i(\frac{1}{\beta}) \\
P_{x}\xi_i^2 P_{y} + \beta^2 M_i(\frac{1}{\beta}) P_{x}\xi_i^2 P_{y} + \beta M_i(\frac{1}{\beta}) P_{x}\xi_i^2 P_{y} + \beta M_i(\frac{1}{\beta})
\end{bmatrix}
\begin{bmatrix}
P_{x}\xi_i^2 P_{y} - \beta^2 M_i(\frac{1}{\beta}) L_i(\frac{1}{\beta}) \\
P_{x}\xi_i^2 P_{y} + \beta M_i(\frac{1}{\beta}) P_{x}\xi_i^2 P_{y} + \beta M_i(\frac{1}{\beta})
\end{bmatrix}
\]
(23)

since
\[
M_i(\frac{1}{\beta}) = (\frac{1}{\beta} - 1)^2 + \frac{\beta^2}{\beta^2} P_x + P_z = \frac{M_i(\beta)}{\beta^2},
\]
\[
N_i(\frac{1}{\beta}) = (\frac{1}{\beta} - 1)^2 + \frac{\beta^2}{\beta^2} P_x + P_z = \frac{N_i(\beta)}{\beta^2},
\]
\[
L_i(\frac{1}{\beta}) = (\frac{1}{\beta} - 1)^2 + \frac{\beta^2}{\beta^2} P_x + P_z = \frac{L_i(\beta)}{\beta^2}.
\]

Eq.(21) can be finally transformed into
\[
\begin{bmatrix}
\beta^2 P_{x}\beta^2 P_{y} - M_z(\beta) L_z(\beta) \\
\beta^2 P_{x}\beta^2 P_{y} + M_z(\beta) N_z(\beta)
\end{bmatrix}
\begin{bmatrix}
\beta^2 P_{x}\beta^2 P_{y} - M_z(\beta) L_z(\beta) \\
\beta^2 P_{x}\beta^2 P_{y} + M_z(\beta) N_z(\beta)
\end{bmatrix}
\begin{bmatrix}
\xi_i^2 P_{x}\xi_i^2 P_{y} + M_z(\beta) P_{x}\xi_i^2 P_{y} + M_z(\beta) P_{x}\xi_i^2 P_{y} + M_z(\beta)
\beta^2 P_{x}\beta^2 P_{y} + M_z(\beta) P_{x}\beta^2 P_{x}\beta^2 P_{y} + M_z(\beta) P_{x}\beta^2 P_{x}\beta^2 P_{y} + M_z(\beta)
\end{bmatrix}
\]
(24)

Comparing Eq.(24) with Eq.(22), we find that both equations are the same except for the unknown variables \(\xi_2 \) and \(\beta \). Therefore, the growth factor \(\xi_2 \) must be equal to \(\beta \). Finally, the total growth factor of procedure one plus procedure two is
\[
\xi = \sqrt{\xi_1^2 \xi_2^2} = \xi_1^2 \xi_2^2 = \frac{1}{\beta} |\beta| = 1
\]
(25)

which is always satisfied so that the 3-D ADI-FDTD algorithm is unconditionally stable in any case.

3 Conclusions

In this paper, we introduce the 3-D ADI-FDTD method for solving electromagnetic problems, and strictly prove its unconditional stability. The proof is much simpler than that given in Ref.[6]. Different from the conventional FDTD method, the limitation of the maximum time-step size of ADI-FDTD method only depends on numerical error. For problems needing very small nonuniform local cells in the computational domain, the 3-D ADI-FDTD method is more efficient than the conventional FDTD method.

References

Brief Introduction to Author(s)

WANG Yingjun (王英军) was born in Nanjing, China, in 1970. He received the M.S. degree in Radio Physics from UESTC in 1999, where he is currently pursuing the Ph.D. degree in electrical engineering. His current research interests include: the numerical techniques in electromagnetics, computer aided design for passive microwave and millimeter wave integrated circuits, and antenna design. E-mail: cemlab@
WANG Bingzhong was born in Chengdu, China, in 1962. He received the Ph. D. degrees from School of Electrical Engineering in UESTC in 1988. He is now the Head of Institute of Applied Physics, UESTC. His current research interests include: computational electromagnetics, numerical modeling and simulation of the electromagnetic behavior in high-speed integrated circuits and electronic packages, EMC analysis, electromagnetic modeling by artificial neural networks, computer-aided design for passive microwave and millimeter wave integrated circuits, and antenna design. E-mail: bzwang@uestc.edu.cn

SHAO Wei was born in Chengdu, China, in 1975. He received the B.S. degree from School of Electrical Engineering in UESTC in 1998. He is now pursuing the Ph. D. degree in Radio Physics. His research interests include: the computational electromagnetics and microwave techniques. E-mail: shaowei@std.uestc.edu.cn

Active International Exchanges

UESTC started its international academic exchange as early as in 1956 on its foundation. 9 Russian experts respectively worked and guided the graduates for 4 years, and 87 experts came for a short-term visit. Meanwhile some promising teachers were sent to Russian for their further training. Since 1978, following the open- up and reform policy and the strategy of “Education must meet the challenge of modernization, the world advancement, and future”, UESTC has been involved in the interaction with overseas universities and institutes and remarkable results have been achieved with the ever-increasing international cooperation and exchange activities. Up to now, 1000 academic groups and 2000 scholars from 300 institutions, research organizations and famous enterprises of over 30 foreign countries and regions. 41 scholars have been appointed honorary professors of UESTC and 100 invited to work here as long-term experts and teacher. 100 international students came to UESTC for their long-term or short-term training. Besides UESTC has organized and hosted seven international conferences and three seminars which has built UESTC a reputation in the world. On the other hand, 500 faculty members supported by the state subsidy and another 60 supported by the scholarship from overseas institutions were sent abroad for their further training or degree–programs study. Among them, 300 returned to UESTC and are now work on the campus as the backbone in teaching and research. Besides, 1000 faculty members went abroad for short-term academic activities including participating conferences, doing survey and co-research.

Many years’ international exchange has brought UESTC to the world. In late 1980s, World Bank granted a loan of $1 million with which a few well-equipped labs and research centers were created on campus. In 1996, UESTC was accepted as a member of World Association of Universities. So far, UESTC has signed cooperation agreements with over 40 well-known universities and institutes such as UC Berkley, MIT, Stanford, Imperial College of Science, Medicine and Technology, Moscow University, Munich University of Technology, Keio University, and Hong Kong University. Benefited from the international exchange and cooperation, UESTC has achieved breakthrough in the fields of Klystron, Plasma technology, Microwave, electronic materials, computer and software. And more than 30 co-research projects have been completed. Furthermore, UESTC has built close ties with some famous enterprises including IBM, Motorola, Intel, HP, TI, Epson, Samsung, and etc. And the donations and financial aids offered by these companies have reached a total of over $4 million, which greatly supported the teaching and research as well as the establishment of labs for co-training programs.